material

C

ID:

mp-568286

DOI:

10.17188/1274344


Tags: Graphite Carbon

Material Details

Final Magnetic Moment
0.000 μB

Calculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit.

Magnetic Ordering
NM
Formation Energy / Atom
0.006 eV

Calculated formation energy from the elements normalized to per atom in the unit cell.

Energy Above Hull / Atom
0.006 eV

The energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures.

Density
1.88 g/cm3

The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%)

Decomposes To
C
Band Gap
0.041 eV

In general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic.

Space Group

Hermann Mauguin
Cmme [67]
Hall
-C 2b 2
Point Group
mmm
Crystal System
orthorhombic

Electronic Structure

Band Structure and Density of States

Warning! Semi-local DFT tends to severely underestimate bandgaps. Please see the wiki for more info.

X-Ray Diffraction

    Select radiation source:
  • Cu
  • Ag
  • Mo
  • Fe

Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)

X-Ray Absorption Spectra

FEFF XANES

Select an element to display a spectrum averaged over all sites of that element in the structure.

Apply Gaussian smoothing:

0 eV
3 eV
FWHM: 0 eV

Download spectra for every symmetrically equivalent absorption site in the structure.

Download FEFF Input parameters.

Warning: These results are intended to be semi-quantitative in that corrections, such as edge shifts and Debye-Waller damping, have not been included.

Substrates

Reference for minimal coincident interface area (MCIA) and elastic energy:
substrate orientation:
substrate material substrate orientation film orientation elastic energy [meV] MCIA [Å2]
C (mp-48) <0 0 1> <0 0 1> 0.000 10.5
Fe2O3 (mp-24972) <0 0 1> <0 0 1> 0.000 137.1
Bi2Te3 (mp-34202) <0 0 1> <0 0 1> 0.000 137.1
KTaO3 (mp-3614) <1 1 1> <0 0 1> 0.001 84.4
ZnO (mp-2133) <1 1 1> <1 0 1> 0.003 287.2
CdWO4 (mp-19387) <1 0 1> <0 1 0> 0.003 178.3
PbSe (mp-2201) <1 1 0> <0 1 0> 0.004 217.9
NaCl (mp-22862) <1 1 0> <1 0 0> 0.005 137.3
KCl (mp-23193) <1 0 0> <0 1 1> 0.006 246.9
ZnO (mp-2133) <1 0 0> <0 1 0> 0.007 138.7
GaSb (mp-1156) <1 1 0> <0 1 0> 0.008 217.9
TeO2 (mp-2125) <0 0 1> <0 1 0> 0.008 257.5
BaF2 (mp-1029) <1 1 1> <0 0 1> 0.012 137.1
CsI (mp-614603) <1 1 0> <0 1 0> 0.012 178.3
TbScO3 (mp-31119) <0 1 1> <0 1 0> 0.013 158.5
C (mp-48) <1 0 0> <0 1 0> 0.015 19.8
C (mp-48) <1 1 0> <1 0 0> 0.015 34.3
Fe3O4 (mp-19306) <1 0 0> <1 0 1> 0.017 71.8
CdSe (mp-2691) <1 1 0> <0 1 0> 0.017 217.9
C (mp-48) <1 0 1> <1 1 1> 0.020 41.0
Te2W (mp-22693) <1 0 1> <1 1 0> 0.021 198.1
GdScO3 (mp-5690) <0 0 1> <0 1 0> 0.027 257.5
DyScO3 (mp-31120) <0 1 1> <0 1 0> 0.031 158.5
LiF (mp-1138) <1 1 0> <0 1 0> 0.033 138.7
ZrO2 (mp-2858) <1 0 0> <1 0 1> 0.033 143.6
SiC (mp-11714) <0 0 1> <0 1 0> 0.033 99.0
PbS (mp-21276) <1 1 0> <1 0 1> 0.037 251.3
Al (mp-134) <1 1 1> <0 0 1> 0.037 84.4
SiC (mp-7631) <0 0 1> <0 1 0> 0.039 99.0
TiO2 (mp-390) <1 1 1> <0 1 1> 0.047 269.3
Te2Mo (mp-602) <1 0 0> <0 0 1> 0.048 274.2
SiC (mp-8062) <1 1 1> <0 0 1> 0.048 200.4
TeO2 (mp-2125) <1 1 0> <0 1 0> 0.052 99.0
MgO (mp-1265) <1 0 0> <1 0 1> 0.054 35.9
TiO2 (mp-390) <0 0 1> <1 0 1> 0.060 71.8
ZrO2 (mp-2858) <1 1 1> <0 1 1> 0.067 202.0
CaF2 (mp-2741) <1 1 1> <0 1 0> 0.069 217.9
TePb (mp-19717) <1 1 0> <0 1 1> 0.073 179.5
ZrO2 (mp-2858) <1 0 -1> <1 1 1> 0.081 287.0
Mg (mp-153) <1 0 1> <0 1 1> 0.082 112.2
GdScO3 (mp-5690) <0 1 0> <0 1 0> 0.100 178.3
TePb (mp-19717) <1 1 1> <0 1 1> 0.108 291.7
Mg (mp-153) <1 1 1> <0 0 1> 0.112 210.9
TiO2 (mp-2657) <1 0 1> <0 1 1> 0.114 157.1
GaN (mp-804) <1 0 1> <0 1 1> 0.118 112.2
LiGaO2 (mp-5854) <0 1 0> <0 1 1> 0.120 291.7
NdGaO3 (mp-3196) <1 0 1> <0 1 0> 0.126 158.5
Cu (mp-30) <1 1 1> <0 0 1> 0.130 137.1
MgAl2O4 (mp-3536) <1 0 0> <0 1 0> 0.131 198.1
CaF2 (mp-2741) <1 1 0> <0 1 0> 0.132 178.3
Up to 50 entries displayed.
minimal coincident interface area.

Surfaces

Reference for surface energies and properties: Periodic Table of Wulff Shapes
Weighted surface energy γ
0.02 J/m2 (0.00 eV/Å2)
Weighted work function Φ
4.24 eV
Shape factor η
69.63
Surface energy anisotropy αγ
20.145
Miller Indices
(hkl)
Surface Energy
(J/m2, eV/Å2)
Work Function
(eV)
Area Fraction Slab
(CIF)
(001) -0.02, -0.00 4.22 0.99
(012) 3.76, 0.23 6.43 0.00
(221) 3.90, 0.24 5.72 0.01
(101) 4.23, 0.26 5.06 0.00
(100) 4.48, 0.28 4.93 0.00
(120) 4.84, 0.30 4.97 0.00
(212) 4.90, 0.31 5.30 0.00
(211) 4.92, 0.31 4.94 0.00
(210) 5.00, 0.31 4.95 0.00
(112) 5.04, 0.31 4.76 0.00
(121) 5.48, 0.34 5.45 0.00
(021) 5.59, 0.35 4.79 0.00
(111) 5.60, 0.35 6.06 0.00
(010) 5.86, 0.37 4.75 0.00
(110) 7.09, 0.44 6.55 0.00
(011) 7.17, 0.45 7.07 0.00

Elasticity

Reference for tensor and properties:
Stiffness Tensor Cij (GPa)
879 -1 160 0 0 0
-1 6 -1 0 0 0
160 -1 879 0 0 0
0 0 0 2 0 0
0 0 0 0 360 0
0 0 0 0 0 1
Compliance Tensor Sij (10-12Pa-1)
1.2 0.2 -0.2 -0.0 0.0 -0.0
0.2 171.0 0.1 -0.0 0.0 -0.0
-0.2 0.1 1.2 -0.0 0.0 -0.0
-0.0 -0.0 -0.0 493.0 -0.0 0.0
0.0 0.0 0.0 0.0 2.8 -0.0
-0.0 -0.0 -0.0 0.0 -0.0 1295.4
Shear Modulus GV
180 GPa
Bulk Modulus KV
231 GPa
Shear Modulus GR
2 GPa
Bulk Modulus KR
6 GPa
Shear Modulus GVRH
91 GPa
Bulk Modulus KVRH
118 GPa
Elastic Anisotropy
397.26
Poisson's Ratio
0.19

Equations of State

Reference:
Equation E0 (eV) V0 (Å3) B C
mie_gruneisen -9.223 10.715 12.645 3.602
pack_evans_james -9.223 10.715 1.403 2.538
vinet -9.224 10.712 12.774 3.852
tait -9.224 10.709 1.420 4.639
birch_euler -9.223 10.713 1.588 -0.444
pourier_tarantola -9.224 10.712 0.238 1.562
birch_lagrange -9.230 10.714 0.865 5.368
murnaghan -9.222 10.722 1.378 2.453
Equations reference

Similar Structures beta feature

Explanation of dissimilarity measure: Documentation.
material dissimilarity Ehull # of elements
B3C10N3 (mp-642462) 0.2306 0.587 3
C3N (mp-1014296) 0.2276 0.304 2
BN (mp-629015) 0.1789 0.004 2
BN (mp-685145) 0.1297 0.007 2
BN (mp-7991) 0.1264 0.000 2
BN (mp-604884) 0.1965 0.004 2
C (mp-990448) 0.1380 0.008 1
C (mp-48) 0.1142 0.006 1
C (mp-568363) 0.0525 0.006 1
C (mp-937760) 0.0531 0.004 1
C (mp-1018088) 0.0865 1.305 1
Up to 5 similar elemental, binary, ternary, quaternary, etc. structures displayed (dissimilarity threshold 0.75). Ehull: energy above hull per atom [eV].

Calculation Summary

Elasticity

Methodology

Structure Optimization

Run Type
GGA
Energy Cutoff
520 eV
# of K-points
None
U Values
--
Pseudopotentials
VASP PAW: C
Final Energy/Atom
-9.2205 eV
Corrected Energy
-36.8819 eV
Uncorrected energy = -36.8819 eV Corrected energy = -36.8819 eV

Detailed input parameters and outputs for all calculations


Show JSON History Show BibTex Citation Download BibTex Citation
ICSD IDs
  • 88813

Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)