Final Magnetic Moment0.000 μBCalculated total magnetic moment for the unit cell within the magnetic ordering provided (see below). Typically accurate to the second digit. |
Magnetic OrderingNM |
Formation Energy / Atom-1.492 eVCalculated formation energy from the elements normalized to per atom in the unit cell. |
Energy Above Hull / Atom0.013 eVThe energy of decomposition of this material into the set of most stable materials at this chemical composition, in eV/atom. Stability is tested against all potential chemical combinations that result in the material's composition. For example, a Co2O3 structure would be tested for decomposition against other Co2O3 structures, against Co and O2 mixtures, and against CoO and O2 mixtures. |
Density5.62 g/cm3The calculated bulk crystalline density, typically underestimated due calculated cell volumes overestimated on average by 3% (+/- 6%) |
Decomposes ToTeO2 |
Band Gap2.913 eVIn general, band gaps computed with common exchange-correlation functionals such as the LDA and GGA are severely underestimated. Typically the disagreement is reported to be ~50% in the literature. Some internal testing by the Materials Project supports these statements; typically, we find that band gaps are underestimated by ~40%. We additionally find that several known insulators are predicted to be metallic. |
Hermann MauguinP212121 [19] |
HallP 2ac 2ab |
Point Group222 |
Crystal Systemorthorhombic |
Topological Classificationtrivial*
|
SubclassificationLCEBR†
|
Calculated powder diffraction pattern; note that peak spacings may be affected due to inaccuracies in calculated cell volume, which is typically overestimated on average by 3% (+/- 6%)
substrate material | substrate orientation | film orientation | MCIA† [Å2] |
---|---|---|---|
LaAlO3 (mp-2920) | <0 0 1> | <0 1 0> | 336.8 |
AlN (mp-661) | <0 0 1> | <0 0 1> | 148.1 |
AlN (mp-661) | <1 0 0> | <1 0 0> | 77.2 |
AlN (mp-661) | <1 0 1> | <1 0 0> | 231.5 |
AlN (mp-661) | <1 1 0> | <0 1 1> | 134.5 |
AlN (mp-661) | <1 1 1> | <0 0 1> | 172.8 |
CeO2 (mp-20194) | <1 0 0> | <1 0 0> | 115.7 |
CeO2 (mp-20194) | <1 1 0> | <1 1 0> | 215.0 |
BaF2 (mp-1029) | <1 0 0> | <1 0 1> | 320.6 |
BaF2 (mp-1029) | <1 1 0> | <0 0 1> | 222.1 |
BaF2 (mp-1029) | <1 1 1> | <1 0 1> | 137.4 |
GaN (mp-804) | <0 0 1> | <0 0 1> | 246.8 |
GaN (mp-804) | <1 0 1> | <0 1 1> | 224.2 |
GaAs (mp-2534) | <1 0 0> | <1 0 0> | 192.9 |
GaN (mp-804) | <1 1 1> | <0 1 0> | 336.8 |
SiO2 (mp-6930) | <0 0 1> | <0 0 1> | 172.8 |
SiO2 (mp-6930) | <1 0 0> | <0 1 1> | 134.5 |
KCl (mp-23193) | <1 0 0> | <1 1 1> | 295.7 |
GaN (mp-804) | <1 0 0> | <0 1 0> | 149.7 |
SiO2 (mp-6930) | <1 0 1> | <1 1 0> | 107.5 |
KCl (mp-23193) | <1 1 0> | <0 1 1> | 179.3 |
DyScO3 (mp-31120) | <0 0 1> | <0 0 1> | 320.9 |
DyScO3 (mp-31120) | <0 1 0> | <1 0 0> | 308.6 |
DyScO3 (mp-31120) | <0 1 1> | <0 1 1> | 269.0 |
InAs (mp-20305) | <1 1 0> | <0 0 1> | 222.1 |
ZnSe (mp-1190) | <1 0 0> | <1 0 0> | 192.9 |
KTaO3 (mp-3614) | <1 0 0> | <1 0 0> | 192.9 |
KTaO3 (mp-3614) | <1 1 0> | <0 0 1> | 320.9 |
KTaO3 (mp-3614) | <1 1 1> | <0 0 1> | 148.1 |
CdS (mp-672) | <1 0 1> | <0 1 0> | 224.6 |
LiF (mp-1138) | <1 0 0> | <1 0 0> | 192.9 |
LiF (mp-1138) | <1 1 0> | <1 1 0> | 215.0 |
Te2W (mp-22693) | <0 0 1> | <1 1 1> | 177.4 |
Te2W (mp-22693) | <1 0 0> | <0 1 0> | 299.4 |
Te2W (mp-22693) | <1 1 0> | <0 0 1> | 222.1 |
CdS (mp-672) | <1 0 0> | <1 1 0> | 268.8 |
LiF (mp-1138) | <1 1 1> | <0 0 1> | 148.1 |
YVO4 (mp-19133) | <0 0 1> | <1 0 0> | 154.3 |
YVO4 (mp-19133) | <1 0 0> | <1 1 0> | 268.8 |
YVO4 (mp-19133) | <1 0 1> | <1 1 0> | 268.8 |
YVO4 (mp-19133) | <1 1 0> | <0 0 1> | 197.5 |
YVO4 (mp-19133) | <1 1 1> | <0 0 1> | 246.8 |
TePb (mp-19717) | <1 0 0> | <0 0 1> | 222.1 |
Te2W (mp-22693) | <0 1 0> | <1 0 1> | 320.6 |
Te2Mo (mp-602) | <0 0 1> | <1 0 1> | 229.0 |
Te2Mo (mp-602) | <1 0 0> | <1 0 1> | 274.8 |
Te2Mo (mp-602) | <1 0 1> | <1 0 1> | 320.6 |
TePb (mp-19717) | <1 1 0> | <0 1 1> | 179.3 |
Ag (mp-124) | <1 0 0> | <0 0 1> | 222.1 |
Ag (mp-124) | <1 1 1> | <0 0 1> | 148.1 |
A full elastic tensor has not been calculated for this material. Registered users can view statistical-learning-based predictions of this material's bulk and shear moduli.
Once you have registered you can also "vote" for full calculation of this material's elastic properties.
Piezoelectric Tensor eij (C/m2) |
|||||
---|---|---|---|---|---|
0.00000 | 0.00000 | 0.00000 | 0.02572 | 0.00000 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | -0.01242 | 0.00000 |
0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.15268 |
Piezoelectric Modulus ‖eij‖max0.15268 C/m2 |
Crystallographic Direction vmax |
---|
0.00000 |
1.00000 |
0.00000 |
Dielectric Tensor εij∞ (electronic contribution) |
||
---|---|---|
5.49 | 0.00 | 0.00 |
0.00 | 6.07 | 0.00 |
0.00 | 0.00 | 5.19 |
Dielectric Tensor εij (total) |
||
---|---|---|
23.39 | 0.00 | 0.00 |
0.00 | 27.83 | 0.00 |
0.00 | 0.00 | 21.50 |
Polycrystalline dielectric constant
εpoly∞
5.58
|
Polycrystalline dielectric constant
εpoly
24.24
|
Refractive Index n2.36 |
Potentially ferroelectric?Unknown |
Run TypeGGA |
Energy Cutoff520 eV |
# of K-pointsNone |
U Values-- |
PseudopotentialsVASP PAW: Te O |
Final Energy/Atom-5.3705 eV |
Corrected Energy-69.9425 eV
Uncorrected energy = -64.4465 eV
Composition-based energy adjustment (-0.687 eV/atom x 8.0 atoms) = -5.4960 eV
Corrected energy = -69.9425 eV
|
Displaying lattice parameters for primitive cell; note that calculated cell volumes are typically overestimated on average by 3% (+/- 6%). Note the primitive cell may appear less symmetric than the conventional cell representation (see "Structure Type" selector below the 3d structure)